
November 1997 The Delphi Magazine 13

Surviving Client/Server:
Data Mining With TDecisionCube
by Steve Troxell

Data mining is a hot buzzword
in the database world. Data

mining generally refers to collect-
ing, categorizing and summarizing
a system’s data to gain some useful
insight about the operation: sales
performance, shipping distribu-
tion, marketing penetration, any
number of possibilities. Actually,
“data mining” is just a fancier term
for “decision support,” which is a
fancier term for the even older
“data analysis.” You can sell more
products by convincing customers
they are behind the perceived
latest industry trends, while you
simply repackage, simplify, and
dress up the same techniques that
have been used for years.

Most RDBMS vendors have
begun to provide specialized “sum-
marizing” capabilities in their SQL
languages. These SQL extensions
typically produce crosstabulation,
or crosstab, result sets in a more
simplified and efficient manner
than is possible with straight SQL
syntax (see More Data Processing
with SQL in Issue 15). With Delphi 3
we now have a suite of decision
support components, centered
around the TDecisionCube compo-
nent, which we can add to our
client applications. With these
components, we can add powerful
decision support capabilities to
our applications. Data analysis
with crosstabs has been around for
decades. TDecisionCube is just an
elegant, simplified user interface
for this statistical analysis
technique. Note that it is included
only with the Client/Server edition
of Delphi 3.

A Data Analysis Example
A typical order tracking system
might contain data like that shown
in Figure 1. Here we track every
order that was made by date and
by method of payment for a six
month period. The software

system uses this data, and more
not shown, to process the order
and ensure proper accounting of
inventory and accounts receiv-
able. However, there is more value
to this data beyond the simple
processing of each order.

As an employee concerned
about the sales performance of our
company, let’s ask ourselves some
reasonable questions about this
data. What were the total sales for
the 2nd Quarter? How did 2nd
Quarter sales compare to the pre-
vious quarter? How did the Master-
Card, Visa, and American Express
sales compare for the period?
What is the average order paid by
credit versus the average order
paid by check? What were the total
sales by month and was there any
trend?

Such questions turn ordinary
transaction data into useful ana-
lytical results. We are now in the
realm of data analysis, or data
mining to use the more popular
buzzword of recent times. If these
questions are routinely asked, we
will usually provide predefined
reports or displays to show exactly
the results we need. If the types of
questions are widely varied or ad

hoc, then we can obtain answers
from the data with a calculator or a
few SQL queries. However, with the
TDecisionCube component and its
supporting components intro-
duced in Delphi 3, we can add a
more elegant user interface for
some types of ad hoc data analysis.

What Will
TDecisionCube Do For Me?
There is a suite of Decision Cube
components, each handling a
specific task in the operation. The
TDecisionCube component man-
ages the crosstab data in memory,
it does not in itself display any-
thing to the user. The raw data is
most often acquired from a data-
base through a TDecisionQuery
component, but a regular TQuery or
even TTable component could be
used.

Next come the user interface
components: TDecisionPivot, TDe-
cisionGrid and TDecisionGraph.
We’ll explain the usefulness of
these components as we go along.
Finally, TDecisionSource is the
“pipeline” between the user inter-
face components and the actual
TDecisionCube component; in much
the same way as TDataSource lies

SELECT SaleDate, PaymentMethod, COUNT(*) AS Num, SUM(ItemsTotal) AS Amount
FROM Orders
WHERE SaleDate BETWEEN '1/1/94' AND '6/30/94'
GROUP BY Saledate, PaymentMethod

SaleDate PaymentMethod Num Amount
1/1/1994 Credit 1 $3,087.00
1/9/1994 Credit 1 $10,054.00
1/17/1994 Credit 1 $4,229.80
2/13/1994 Check 1 $15,052.00
3/3/1994 Visa 1 $5,011.00
3/14/1994 MC 1 $12,900.75
3/25/1994 AmEx 1 $7,671.90
4/7/1994 Credit 1 $97,698.60
4/16/1994 Credit 1 $3,860.85
5/1/1994 Visa 1 $13,226.80
5/5/1994 Credit 1 $13,935.95
5/9/1994 MC 1 $12,367.00
5/22/1994 Credit 1 $9,793.55
6/1/1994 Check 1 $2,206.85
6/4/1994 Credit 1 $102,453.60
6/9/1994 Credit 1 $3,153.00
6/14/1994 Credit 1 $342.00
6/26/1994 Visa 1 $2,692.85

➤ Figure 1

14 The Delphi Magazine Issue 27

between data-aware controls and
dataset components.

Before we look at how the deci-
sion cube suite of components
work, let’s look at their runtime
behavior so we know what we’re
trying to achieve. Figure 2 shows a
screen we might set up to repre-
sent our data. It shows a TDecision-
Grid component surrounded by
three TDecisionPivot components,
one above (the large PaymentMethod
button), one to the left (the large
SaleDate button) and one in the
upper left corner (the Order Subto-
tal dropdown list).

The data is represented in this
example by the TDecisionGrid as a
crosstab of two dimensions. The
columns represent the unique
values for PaymentMethod (the
PaymentMethod dimension) and the
rows represent the unique values
for SaleDate (the SaleDate dimen-
sion). Crosstabs such as this are
not limited to two dimensions: we
can have a single dimension or any
number dimensions in the decision
cube. The values in the interior of
the grid are summary values repre-
senting the total amount of sales
for the intersection of a given date
and a given payment method. The
edges of the grid conveniently
show us the totals for each row and
column or, more precisely, totals
for each value in each dimension.

So a decision cube is a crosstab
consisting of 1 to n dimensions
with a summary value at each inter-
section. The summary value is an
aggregation of some value in all the
records having the same data
values as the corresponding
dimensions. For example, there
happens to be one record with
SaleDate of 6/4/1994 and Payment-
Method of Credit and its summary
value is $102,453.60. This aggrega-
tion aspect is hard to see in this
example since there is only one
record per date in SaleDate.

We can give the user the ability
to change the granularity of date
dimensions to single values,
months, quarters, or even years.
Figure 3 shows the same data
rolled up into months. Now we see
the three June credit orders aggre-
gated together into the single
summary value $105,948.60.

➤ Figure 2

The TDecisionGrid component
allows the user a large degree of
control over the display of the
data. Each dimension in the
display can be expanded or col-
lapsed by clicking the small yellow
button next to the dimension
header label. We can also expand
or collapse a dimension by clicking
the corresponding button in the
TDecisionPivot control.

We can effectively change the
number of dimensions in the dis-
play, and hence the resolution of
the data analysis, by opening and
closing one or more dimensions.

When collapsing a dimension, only
the totals for that dimension are
visible, as shown in Figure 4 with
the SaleDate dimension collapsed.

With a collapsed dimension, we
can also allow the user to “drill
into” a specific value of that dimen-
sion. By right-clicking on a pivot
button, we can select Drilled In
from the context menu. Once
drilled in, click on the pivot button
again to get a list of values in that
dimension and select any one we
wish to focus on. In Figure 5, we’ve
drilled in on the March 1994 value
for the SaleDate dimension.

➤ Figure 3

➤ Figure 4

16 The Delphi Magazine Issue 27

With the pivot controls, we can
also alter the arrangement of
dimensions in the display. By
right-clicking on the PaymentMethod
button, one of the context menu
options is Move to Row Area. By
selecting this, the entire dimension
is redisplayed with row orientation
as shown in Figure 6. Likewise, we
can move any row dimension to
column orientation by selecting
Move to Column Area from the pivot
button’s context menu.

We can drag and drop a dimen-
sion button within a pivot control
to change its relative position
within the display. In Figure 7, we
dragged the SaleDate button above
the PaymentMethod button and
obtained a very different view of
the data.

We can provide any number of
summary values, but can only dis-
play one set of summary values at a
time. The user can select from
among the summary values we
provide through the summary
button in the pivot control. In these
examples, this is the Order Totals
button in the upper left corner.
Examples of summaries we can

provide for this data are: number
of orders, total amount of order
including freight, taxes, and dis-
counts, average order amount, etc.
Any summary calculation we can
express using a SELECT GROUP BY
statement in SQL can be provided
as a display option to the user.
Note that this does not limit us
solely to SQL aggregate function
results, although they almost
always participate in the
calculations.

Finally, we also have the TDeci-
sionGraph component at our dis-
posal to graphically represent our
crosstab data (Figure 8). We use
the same pivot controls to alter the
dimensions and summary values.
TDecisionGraph is merely an alter-
native display of the decision cube
data and is actually a variation of
the TeeChart component by David
Berneda. It contains a plethora of
options for customizing a graph’s
appearance. The standard
TeeChart component is also avail-
able in Delphi 3 as TChart on the
Additional page.

TDecisionQuery
Now that we know what Decision
Cubes can do for us, what do we

have to do to set it all up? First we
start with the TDecisionQuery com-
ponent to define the values we
need from the database. TDeci-
sionQuery is a specialized form of
TQuery.

With the Decision Query Editor,
you can select one or more tables
and identify which columns will be
the dimensions and what values
will be the summaries for those
dimensions. It automatically gen-
erates an SQL SELECT statement
with the appropriate GROUP BY
clause and select list to support
the decision cube data you’ve
defined.

Listing 1 shows the SQL
generated for the decision cube
we’ve been using in our examples.
The dimensions are SaleDate and
PaymentMethod and there are three
sets of summary values represent-
ing by the three aggregate func-
tions. Notice that we can have as
many different summary values as
we want, but only one set can be
displayed in TDecisionCube at one
time.

The WHERE clause was added by
hand to filter the range of records
down. Actually if we wanted sum-
mary values or dimensions that
were not simple fields from the
data, we can modify the SQL by
hand to add the values we need.
For example, we might want to see
the total of the order amount and

➤ Figure 6 (below left)
➤ Figure 7 (below right)

➤ Figure 5

November 1997 The Delphi Magazine 17

the freight charges but not tax, so
we might add SUM(ItemsTotal) +
SUM(Freight) to our SELECT list as an
additional summary value.

TDecisionCube
Now that we have the data defined,
we come to the actual TDecision-
Cube component and attach our
TDecisionQuery component to it via
the Dataset property. The signifi-
cant property of this component is
the Decision Cube Editor, which is
used to setup some parameters of
the decision cube.

The Display Name is just that, the
name that appears in the visual
controls. The pivot, grid, and
graph controls all inherit the dis-
play name for each field from TDe-
cisionCube. The Type field tells us
whether the value is a dimension
or summary value. You only have
to set this if a TTable is used to pro-
vide the data.

Active Type can be set to one of
three values: Active, Inactive or As
Needed. Active means the dimen-
sion or summary is always loading
into TDecisionCube. Inactivemeans
it is never loaded and is not avail-
able through the display controls.
Note that the data still gets loaded
from the database when the deci-
sion cube refreshes itself, it is just
not stored in TDecisionCube
memory. When large decision
cubes are built, you might want to

SELECT SaleDate, PaymentMethod, SUM(ItemsTotal),
COUNT(ItemsTotal), SUM(AmountPaid)

FROM "ORDERS.DB"
WHERE (SaleDate >= '01/01/1994')

AND (SaleDate <= '06/30/1994')
GROUP BY SaleDate, PaymentMethod

➤ Listing 1

turn on and off the loading of some
dimensions or summaries so that
only a certain amount are available
at the same time. As Needed means
the value can be swapped in and
out of memory with other As
Needed values to stay within a pre-
defined threshold. This threshold
is defined using the Memory Control
tab of the Decision Cube editor or
the MaxDimensions and MaxSumma-
ries properties.

For dimensions comprising date
values, the Grouping and Initial
Value settings can be used to roll
up dates into more useful sets of
dates: years, quarters, months or
explicit values (compare Figure 2
and Figure 3). When a date group-
ing has been defined, Initial Value
can be used to set the boundaries
of the grouping. To tell the truth, I
have had a number of problems
getting this feature to work cor-
rectly. I am still baffled as to how to
get date values to bin into the
proper groups for anything other
than normal calendar groups and
have seen erroneous attribution of
years in some Quarter groupings.
Nevertheless, I will attempt to
explain how this feature is
intended to work.

Initial Value is most commonly
needed for software that, for
accounting purposes, use fiscal
date groupings that rarely line up
with the calendar. For example, the

company’s fiscal year may run
from November 1st through Octo-
ber 31st. Therefore, its first quarter
would run from Nov 1st through
Jan 31st. If the company handles
monthly recurring billing, like
most public utility companies,
pay-television subscription serv-
ices, Internet Service Providers
etc, then their “billing month” may
run from the 20th of the previous
month to the 19th of the current
month, for example. In this case,
their fiscal year and quarters most
likely would also start of the 20th of
their respective months instead of
the 1st.

All the TDecisionCubeparameters
may be setup at runtime through
the DimensionMap property. This
may allow you to provide users
with runtime selection of fields and
values to analyze in the Decision
Cube.

TDecisionSource
User interface controls are con-
nected to the decision cube
through the TDecisionSource com-
ponent, much the same as data-
aware controls are connected to
data-access components via a TDa-
taSource component. TDecision-
Source acts as the intermediary
between TDecisionCube and any
TDecisionPivot, TDecisionGrid or
TDecisionGraph controls you may
be using.

TDecisionPivot
As we saw earlier, TDecisionPivot
controls provide a way for users to
rearrange the dimensions that

➤ Figure 8 (below left)
➤ Figure 9 (below right)

18 The Delphi Magazine Issue 27

constitute the “rows” and “col-
umns” of the decision cube. These
controls do not actually display
any data in the cube, but merely
control its representation. They
can be omitted if you want to limit
the degree of control your users
have over the cube display.

Pivot controls have buttons to
represent each dimension value
and a single button to select from
the available summary values. All
of these can be grouped into a
single pivot control, or split out
into separate controls as we’ve
done in the previous examples.
The Groups property allows us to
specify which controls are handled
by a specific pivot (rows, columns
or summaries).

TDecisionGrid
The most common way cube data
will be displayed in an application
is through a TDecisionGrid control.
The Dimensions property brings up
the Cube Dimension Settings
Editor (much like the Fields Editor
for a TDataSet component). This
editor lists all the dimension and

summary fields of the cube, and
when any one of the listed values is
selected, the Object Inspector
reveals the display properties of
that value. At this level, you can
change the alignment, color,
format, or display name of any of
the values in the grid. Note that it is
here where you would change the
bothersome default center-
alignment behavior of the sum-
mary cells. Annoyingly, you cannot
change the alignment of the sub-
total cells though.

You have some degree of control
over the painting of each cell with
the OnDecisionDrawCell. However,
this is unlike the OnDrawCell event
handler for regular grids: you don’t
have full control over the entire
rectangle to be drawn. You can
only affect the display string, color,
and font. So, even though you can
set right-alignment for cell values
through the Dimensions property,
you cannot override the cell draw-
ing to prevent the data from being
painted just one pixel away from
the cell edge (as is the default for
right-aligned data).

TDecisionGrid contains a pro-
tected DrawCell method that you
could override to have more
control over cell painting.

Conclusion
The Decision Cube suite of compo-
nents in Delphi 3 can provide
useful decision support functions
to your applications. Decision
Cubes should not be used as a sub-
stitute for fixed reporting and dis-
plays if the user needs specific
information on a recurring basis.
However, as a means to provide an
ad hoc analysis tools, decision
cubes may be very helpful. Be wary
of the grouping feature of date
dimensions.

Next month we’ll look at several
fuzzy logic algorithms for locating
words in text when the exact
spelling may not be known.

Steve Troxell is a Senior Software
Engineer with TurboPower Soft-
ware. He can be reached by email
at stevet@turbopower.com or on
CompuServe as STroxell.

	A Data Analysis Example
	What Will TDecisionCube Do For Me?
	TDecisionQuery
	TDecisionCube
	TDecisionSource
	TDecisionPivot
	TDecisionGrid
	Conclusion

